Министерство образования, науки и молодёжной политики Краснодарского края Государственное бюджетное учреждение дополнительного образования Краснодарского края «Центр развития одарённости»

Ответы к контрольной работе № 3 по математике для учащихся 7 класса очно-заочного обучения (с применением дистанционных образовательных технологий и электронного обучения) (заочные курсы «Юниор»)

Составитель: Невечеря Артём Павлович, преподаватель кафедры ФГБОУ ВО «КубГУ

ОТВЕТЫ

Общие критерии оценивания

Всего 5 заданий. Каждое задание оценивается от 0 до 7 баллов в соответствии со следующими критериями:

Баллы	Правильность (ошибочность) решения		
0	Решение неверное, продвижение отсутствует. Решение		
	отсутствует.		
0–1	Рассмотрены отдельные важные случаи при отсутствии		
	решения (или при ошибочном решении).		
2–3	Доказаны вспомогательные утверждения, помогающие при		
	решении задачи.		
3–4	Решение содержит существенные ошибки и пробелы в		
	обоснованиях. После незначительных корректировок и		
	соответствующих дополнений может стать полностью		
	правильным.		
5–6	Решение содержит незначительные ошибки или пробелы в		
	обоснованиях, но в целом верно и может стать полностью		
	правильным после небольших исправлений и дополнений.		
6–7	Верное решение. Имеются небольшие недочёты, в целом		
	не влияющие на решение.		
7	Полное верное решение.		

Максимальную оценку за работу – 35 баллов – участник получает при полном и корректном выполнении всех заданий.

Задание 1.

Решение.

Пусть $a_i - i$ -й элемент анализируемой последовательности. Заметим, что $a_i = (i+1)(i+2)-i$. Тогда $a_7 = 65$, $a_{2020} = 4084442$.

Ответ: 65; 4084442.

Критерии оценивания.

Найдено только $a_7 - 2$ балла.

Выведен общий вид элементов последовательности, правильный ответ не получен -5 баллов.

Правильный ответ – 7 баллов.

Задание 2.

Решение.

Разделим рисунок на части, как показано на рисунке (рис 1):

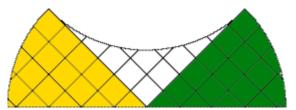


Рисунок 1.

Сложив и повернув получившиеся части, получим квадрат (рис 2).

Ответ:

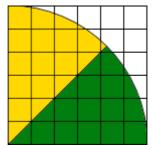


Рисунок 2.

Критерии оценивания.

Правильный ответ – 7 баллов.

Задание 3.

Решение.

Заметим, что среди 5 последовательных нечётных чисел хотя бы одно будет кратно 5 (таблица 1).

Таблица 1. Всевозможные остатки любых пяти последовательных нечётных чисел при делении на 5.

Число	Остатки при делении на 5				
2k + 1	0	1	2	3	4
2k + 3	2	3	4	0	1
2k + 5	4	0	1	2	3
2k + 7	1	2	3	4	0
2k + 9	3	4	0	1	2

Следовательно, произведение 5 последовательных чисел кратно 5. Следовательно, число \overline{aabaab} будет кратно 25, так оно в 5 раз больше произведения 5-и последовательных чисел.

Так как *aabaab* — произведение нечётных чисел, то оно нечётно. То есть при делении на 4 <u>aabaab</u> даёт в остатке 1 или 3. С учётом предыдущего утверждения (*aabaab* кратно 25), получаем два возможных варианта:

- а) aabaab при делении на 100 даёт в остатке 25, то есть b = 5, a = 2;
- б) \overline{aabaab} при делении на 100 даёт в остатке 75, то есть b=5, a=7.

Далее заметим, среди 3 последовательных нечётных чисел хотя бы одно будет кратно 3 (таблица 2).

Таблица 2. Всевозможные остатки любых трёх последовательных нечётных чисел при делении на 3.

Число	Остатки при делении на 3
-------	--------------------------

2k + 1	0	1	2
2k + 3	2	0	1
2k + 5	1	2	0

Следовательно, ааваав кратно 3.

Если b = 5, a = 7, то сумма цифр числа \overline{aabaab} равна 38 — не кратна 3, тогда \overline{aabaab} не кратно 3. Противоречие.

Если b = 5, a = 2, то сумма цифр числа \overline{aabaab} равна 18 – кратна 3, тогда \overline{aabaab} кратно 3. Проверка: $225225 = 5 \cdot (5 \cdot 7 \cdot 9 \cdot 11 \cdot 13)$.

 $\frac{\text{Таким}}{aabaab}$ образом, единственный возможный ответ на поставленную задачу:

Ответ: a = 2, b = 5.

Критерии оценивания.

Показано, что \overline{aabaab} кратно 25 – 2 балла.

Показано, что aabaab при делении на 100 может дать в остатке только 25 или 75-5 баллов.

Правильный ответ – 7 баллов.

Залание 4.

Решение.

Упростим выражение $(x+y)(x-y+2)-(x-1)^2+(y-1)^2$:

$$(x+y)(x-y+2)-(x-1)^{2}+(y-1)^{2}=(x+y)(x-y+2)-((x-1)^{2}-(y-1)^{2})=$$

$$=(x+y)(x-y+2)-(x-1+y-1)(x-1-y+1)=$$

$$=(x+y)(x-y+2)-(x+y-2)(x-y)=$$

$$=(x+y)(x-y)+2(x+y)-(x+y)(x-y)+2(x-y)=2(x+y+x-y)=4x.$$

Переходим к решению следующего неравенства:

$$30 < 4x < 34$$
.

Так как x – натуральное число, то x = 8.

Переменная у может принимать любые значения.

Ответ: x = 8, y – натуральное число.

Критерии оценивания.

Найден x, нет оценки для переменой y-4 балла.

Правильный ответ – 7 баллов.

Задание 5.

Решение.

Пусть $X = \{3,4,5,6\}$. Если $x \in X$, тогда $9 - x \in X$.

Теперь заметим, что если некоторое пятизначное число \overline{abcde} составлено из цифр 3, 4, 5 и 6, то число $\overline{a_1b_1c_1d_1e_1} = 99999 - \overline{abcde}$ будет пятизначным, составленным цифр 3, 4, 5 и 6. При этом $\overline{abcde} \neq \overline{a_1b_1c_1d_1e_1}$ в силу нечётности 99999. Следовательно, все пятизначные числа, составленные из цифр 3, 4, 5 и 6

можно разбить на непересекающиеся пары чисел \overline{abcde} и $\overline{a_1b_1c_1d_1e_1}$, причём сумма чисел в каждой паре будет равняться 99999.

Пусть всего существует N различных пар. Тогда сумма S всех чисел, составленных из цифр 3, 4, 5 и 6 будет выражаться следующим образом:

$$S = 99999 \cdot N$$
.

Так как 99999 кратно 271 и 41, то *S* также будет кратно 271 и 41.

Ответ: И Настя, и Оля не ошиблись – сумма будет кратна и 41, и 271.

Критерии оценивания.

Правильный ответ без пояснения – 0 баллов.

Установлено, что числа можно разбить на непересекающиеся пары чисел, причём сумма чисел в каждой паре будет равна 99999 — 6 баллов.

Правильный ответ с корректным доказательством – 7 баллов.