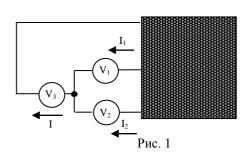
Министерство образования, науки и молодёжной политики Краснодарского края Государственное бюджетное учреждение дополнительного образования Краснодарского края «Центр развития одарённости»

Ответы к контрольной работе № 3 по физике для учащихся 8 класса очно-заочного (с применением дистанционных образовательных технологий и электронного обучения) обучения (заочные курсы «Юниор»)

Составитель:


Половодов Юрий Александрович, доцент кафедры физики и информационных систем ФГБОУ ВО «КубГУ», кандидат пед. наук

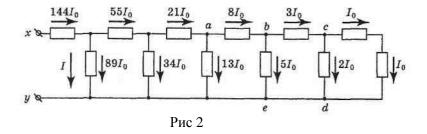
Краснодар 2020

ОТВЕТЫ

Задача 1.

«Третий вольтметр» (10 баллов)

Для решения задачи предложенную схему удобно изобразить, как показано на Напряжения, измеряемые пропорциональны вольтметрами, протекающим по ним токам. По закону Ома для участка цепи напряжение U = IR. Поскольку сопротивления вольтметров одинаковы и напряжения на первом и втором вольтметрах тоже одинаковы, TO


протекающие по ним, должны быть одинаковы. Так как ток в узле разветвления $I=I_1+I_2$, то, следовательно, по третьему вольтметру потечет вдвое больший ток, и он покажет вдвое большее напряжение.

Однако, это не единственно возможный результат. Если токи через первый и второй вольтметры текут в разные стороны, ток через третий вольтметр течь не будет и показание его буде нулевым. Так что возможное показание третьего вольтметра либо 20 В, либо 0.

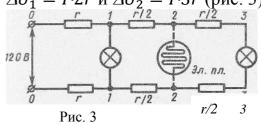
10 баллов за правильный ответ. Приведена эквивалентная схема -4 балла. указание того, что токи на первом и втором вольтметрах одинаковы -2 балла. Определение тока и напряжения в третьем вольтметре -2 балла. Указание на второе возможное значение -2 балла.

Задача 2. «Сложная цепь»

- 1) Последовательно рассмотрим все токи и напряжения на элементах цепи, начиная с последнего звена (см. рис. 1). Обозначим силу ток в последнем звене через I_0 . Тогда напряжение на участке сd будет равно $2rI_0$, а сила тока через третий справа резистор будет равна $2I_0$. Следовательно, сила тока на участке вс равна $3I_0$. Рассуждая подобным образом, получаем: $I_0 = 0.1 \text{ A}$.
- 2) $U_{xy} = (144 + 89)rI_0 = 23.3 \text{ B}.$
- 3) $R_{xy} = \frac{U_{xy}}{144I_0} = 1,62 \text{ Om.}$

10 баллов всего, из которых за пункт 1 5 баллов, за 2 пункт решения 3 балла. За 3 пункт – 2 балла.

Задача 3. (5 баллов)


В 4 раза.

Указание. Воспользовавшись формулами для сопротивлений последовательно т параллельно соединенных проводников с сопротивлениями R и r, получить уравнение для их отношения $x = \frac{R}{r}$

Задача 4.

Потребляемая первой лампочкой мощность уменьшится на 1,4 Вт; второй – на 2,1 Вт.

Указание. После включения электроплитки увеличится падение напряжения на проводящих проводах, и на каждой из лампочек уменьшится напряжение на $\Delta U_1 = I \cdot 2r$ и $\Delta U_2 = I \cdot 3r$ (рис. 3)

При этом уменьшится и потребляемая лампочками мощность; изменение ее равно $\Delta N = \frac{U^2 - (U - \Delta U)^2}{r_{_{\! I}}} \approx \frac{2U \Delta U}{r_{_{\! I}}}$. Сопротивления $r_{_{\! I}}$ и r находим по формулам:

$$r_{\pi} = \frac{U^2}{N}$$
 и $r = \frac{\rho l}{2S}$.

Примечание. Падением напряжения на проводах до включения плитки можно пренебречь.

10 баллов всего.

Итого за контрольную работу 35 баллов.